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Electrospray atomization of liquids in the cone-jet mode generates narrow droplet
distributions with average diameters as small as a few nanometres. This ability
is important for technologies such as colloid thrusters, nanoparticle generation
and ion beam processes, and the optimization of these applications requires an
understanding of the physics and structure of the associated beams. This paper
presents a detailed experimental characterization of electrosprays in vacuum and
formulates an analytical model of the beam. A key feature of our model is the use
of a simplified expression for the electric field induced by the space charge. This
simplification leads to a time-independent Eulerian formulation compatible with an
analytical solution, in contrast to the direct simulation of a multitude of droplets which
must be simultaneously tracked to account for Coulombic interactions. We find that
the beams open up in an initial region relatively insensitive to the external electrodes,
a process dominated by the electric repulsion between droplets and the initial droplet
inertia. Although the external electric field modifies the trajectories of the droplets
downstream of this initial region, the effect is moderate in our typical electrospray
source and the analytical solution in the space charge region explains well the far-field
beam structure observed experimentally. We also describe a numerical scheme that
implements the full effect of the external electric field and provides a more accurate
solution.

1. Introduction

Electrohydrodynamic spraying in the cone-jet mode (Cloupeau & Prunet-Foch
1989) is the only technique known to atomize dielectric liquids into similar
submicrometric droplets. The axial component of the electric field induced by a Taylor
cone accelerates the charged jet emanating from its tip, and reduces its initial diameter
(Ganan-Calvo 1997). Disturbances on the jet surface are initially damped by the fast
acceleration of the jet, but as the electric field weakens and the acceleration slows,
perturbation modes with the appropriate wavelength grow into droplets. The breakup
of a cylindrical jet is a phenomenon accurately described by the theory of capillary
instability, which explains the observed narrow distribution of droplet diameters on
the basis of the exponential growth of axisymmetric perturbation modes, together
with the existence of a critical wavelength of maximum growth speed (Chandrasekhar
1981). The droplets emitted by cone-jets can be smaller than those produced by other
techniques relaying on a jet breakup, e.g. direct pressure atomizers or the remarkable
pneumatic atomizer of Gafan-Calvo (1998), because the initial diameter of the
electrospray jet can be made as small as a few nanometres by choosing/controlling the
properties of the liquid (especially its electrical conductivity, Fernandez de la Mora &
Loscertales 1994), and because the strong and stabilizing electrical force further thins
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FiGure 1. Electrosprays at atmospheric pressure (a) and vacuum (b). The image in vacuum
shows from left to right: the capillary emitter (approximately 1 mm outer diameter), the Taylor
cone, and the beam of droplets. The atmospheric drag reduces the velocity of the droplets,
and increases the space charge density and the spread of the beam.

the jet. Ion field evaporation (Gamero-Castafio 2002), which changes the physics of the
cone-jet and seems to preclude the formation of a jet, sets a minimum of the order of a
few nanometres for the initial diameter of electrospray droplets (Fernandez de la Mora
2007).

Technologies using electrospray atomization are improved by, or require, a detailed
knowledge of the structure of the associated beams. Fernandez de la Mora (1992) has
solved the particular case of a droplet velocity field proportional to the electric field,
1.e. the inertialess droplet case typical of highly conducting liquids at atmospheric
pressure. Among other results, Fernandez de la Mora’s solution explains the observed
departure of liquid cone angles from the spray-free value of 49° computed by
Taylor (1964), and predicts the droplet density as a function of position. This
information is important to optimize, for example, the initial sampling stage of
an electrospray mass spectrometer, which is by far the most important application
of electrosprays (Fenn et al. 1989). The present paper deals with the opposite case
in which droplet inertia is significant, and only the electrostatic force is important.
The ideal example is that of an electrospray in vacuum, a case of particular interest
for colloid thrusters and ion beam applications. Figure 1 shows the clear difference
between electrospray beams held at atmospheric pressure and under vacuum. The
drag on the droplets at atmospheric pressure reduces their velocities, increases
the relative importance of repulsion between droplets, and augments the spread of the
beam.

The goal of this paper is to find the functional dependency between the beam
structure of a cone-jet in vacuum and the properties of the droplets. The paper is
organized as follows: first, we provide a detailed characterization of five electrosprays
of a propylene carbonate solution. Section 3 introduces a mathematical model for
the trajectories of droplets. The analysis of the equations shows that the electric
repulsion between droplets is the dominant force in a small region near the emission
point, an observation that leads to the simplification of the equations and to an
approximate analytical solution valid inside the space charge region. After this, we
compute a more accurate solution by numerically integrating the trajectories between
the emission point and the extractor plane. The importance of the experimental
characterization, which provides the input parameters required by the beam model
and validates the solution, is made apparent throughout § 3. Finally, § 4 summarizes the
results.
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FiGUure 2. Experimental set-up. The electrospray source is inside a vacuum chamber. Its beam
of charged droplets is characterized with a retarding potential analyser and an induction
charge detector. The polar angle 6 is defined by the emission point and the axis of the beam.

2. Experimental characterization
2.1. Experimental arrangement and beam profiles

Figure 2 shows the experimental set-up. The electrosprays are generated inside a
vacuum chamber, at a pressure in the 107>-10~® Torr range. The emitter is a stainless
steel capillary tube separated from an extracting electrode by a 3.17mm gap. The
outer and inner diameters of the emitter are 0.23 and 0.11 mm, while the extractor
orifice has a diameter of 3.95mm. The opposite end of the capillary is inserted in
a reservoir with the liquid and placed outside the vacuum chamber. The pressure
inside the reservoir is adjusted to drive the desired flow rate. When an appropriate
voltage difference ¢ is applied between the emitter and extractor electrodes (typically
1950 V in these experiments), the liquid at the emitter tip shapes into a Taylor cone
and breaks into droplets at its apex. The resulting beam of droplets passes through
the extractor orifice and enters a larger area of the vacuum chamber where it is
characterized by a retarding potential analyser (RPA) with a sampling orifice of
4.97 mm?, and by an induction charge detector (ICD, Gamero-Castafio 2007) that
senses individual droplets. The RPA can also measure the flux of charge through its
sampling orifice when no retarding potential barrier is applied, rendering in this mode
a profile of the beam current. Downstream of the extractor, the droplet trajectories



342 M. Gamero-Castaio

Current density (A sr1)

Polar angle (deg.)

FiGUure 3. Current per solid angle as a function of polar angle (beam profiles). The five
electrospray currents show a pattern of increasing satellite droplet generation for increasing
beam current.

are approximately straight lines originating from the emitter tip; the polar angle 6
used throughout the paper is defined by the emission point (the origin of a spherical
coordinate system) and the beam axis (polar axis). Both the RPA and the ICD
are mounted on an X, Y, Z positioning stage to sample any point in the beam. In
addition, the electrospray source can be rotated around an axis intersecting the tip
of the emitter, which lets the ICD study droplets at any polar angle (the axis of the
ICD cannot be rotated).

Our emitter—extractor geometry is typical of electrospray applications that require
shielding of the emission region from external electric fields. The orifice in the
extracting electrode allows the outflow of the electrospray beam to generate thrust
in a colloid thruster, deposit droplets on a surface, analyse the properties of the
droplets, etc. The extractor orifice increases the radial component of the electric field
induced by the electrodes. The larger radial field slightly increases the exit angle of
the trajectories of droplets.

The liquid electrosprayed is a 0.033 % (vol) solution of 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl) imide (McEwen et al. 1999) in propylene carbonate. The
ionic liquid provides the free charge required by the electrospraying process. Propylene
carbonate was chosen because of its low vapour pressure (required for vacuum
operation), and high dielectric constant (to dissolve and dissociate high concentrations
of electrolytes). The density p, viscosity u, surface tension y, dielectric constant e,
and an estimate of the vapour pressure of pure propylene carbonate are 1200kgm—3,
0.00276 kgs~'m™!, 0.0419 Nm~!, 64.9 and 2.9 Pa (20°C, Riddick, Bunger & Sakano
1986). We will use these values for the mixture because of the low solute concentration.

Figure 3 shows the beam profiles (current per unit solid angle as a function of polar
angle) of five electrosprays with beam currents of 46, 58, 69, 92 and 125 nA. The sprays
become broader for increasing current. The profile for 46 nA resembles a rectangle
function with an edge sharply falling to zero current density. The 58 nA profile has a
similar shape, except for a small current tail extending beyond 14°. As the electrospray
current increases, the area under this tail becomes larger; it separates from the central
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region of the beam, and the overall profile becomes the superposition of two fairly
disconnected coaxial beams. These profile measurements, together with the RPA and
ICD data described in the following paragraphs, show that the inner and outer
beams are formed by two distinct populations of droplets: main and satellite. The
inner beam carries main droplets, while the outer beam is made of satellite droplets.
The main droplets of a given electrospray have larger diameters, mass to charge
ratios, and retarding potentials than their satellite counterparts (Gamero-Castaio &
Hruby 2002).

Ashgriz & Mashayek (1995) describe the generation of satellite droplets in
axisymmetric breakups. They find that satellites originate when the breakup point in
the sinusoidal disturbance shifts from its neck towards its swell, an event happening
for large enough values of the Reynolds number, Re = (1/u)(py R;)"*> (R, is the
radius of the jet). At large Re, the fluid in the ligament between two consecutive main
droplets detaches from them and becomes a smaller satellite droplet. Conversely, at
low Re, the breakup point occurs at the neck of the disturbance and satellite droplets
do not develop. Our charged jets display a pattern consistent with this picture: the
jet radius scales linearly with the beam current (Gamero-Castafio & Hruby 2002),
making the Reynolds number an increasing function of the latter; at the lowest beam
currents, and therefore at the lowest Reynolds numbers, there are no satellite droplets;
however, as the beam current and the Reynolds number increase, a critical point is
reached that triggers the formation of satellite droplets, and increasing numbers of
them are generated thereafter.

2.2. Measurement of the retarding potential of droplets

The retarding potential of a droplet ¢rp, defined as the sum of its kinetic and potential
energy divided by the charge

brp = 21§V2(x +é(x) (1)

is a constant of the droplet in an electrostatic field (Enloe & Shell 1992). & stands
for the charge to mass ratio of the droplet. The electric field in the spray fluctuates,
especially near the emission point, because of the stochastic generation and motion of
different droplets. However, we will show in §2.4 that the random contribution to the
retarding potential of droplets caused by the Coulombic interaction between them
is small, and we will assume that the retarding potentials remain constant. Figure 4
shows retarding potential cumulative distributions for the 92 nA electrospray at
different polar angles. The electric potential of the emitter is 1950 V. An error
function is fitted to each data set to eliminate noise, and to illustrate that the
density distributions f(¢rp) are Gaussian-like. The mean retarding potentials of
main droplets slowly decrease for increasing polar angle, especially near the axis.
The standard deviations also decrease for increasing polar angle. The means of the
satellite droplet distributions are considerably lower, they decrease with increasing
polar angle, and the distributions are narrower.

Figure 5 shows the emitter potential minus the mean retarding potential, ¢p —
(¢prp), and the standard deviation STD(¢rp), as functions of the polar angle. The
trends described above for the 92 nA case are common to all beams: initially,
the mean retarding potential remains approximately constant, or slowly decreases,
as the polar angle increases; the mean retarding potential decreases faster when
the polar angle approaches the edge of the inner beam; and the mean retarding
potentials for satellite droplets are significantly lower than for main droplets. The
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FIGURE 4. Retarding potential cumulative distributions at different polar angles (/g =92 nA).
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FiGURE 5. Emitter potential minus mean retarding potential, and standard deviation of the
retarding potential distribution, at different polar angles.

dependence of the standard deviation on the polar angle displays a similar pattern:
the distributions become slightly narrower as the polar angle increases; and for a
given electrospray, the distributions of satellite droplets are narrower than those of
main droplets. The last observation does not hold for the 125 nA electrospray, which
has a spike around 18.5°. This is due to the larger region of overlap between the
satellite and main droplets, as shown in figure 3. We do not differentiate between the
two droplet populations when computing the standard deviation. Thus, if a location
with a mixture of main and satellite droplets is sampled, the dissimilar retarding
potentials result in a large standard deviation for the mixture.

2.3. Measurement of the diameter and the charge of droplets

The ICD measures the charge and time of flight TOF of a droplet (Shelton,
Hendricks & Wuerker 1960). The time of flight, combined with the retarding potential
(the laboratory ground is the reference for the electric potential, while the potential
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FIGURE 6. Charge to mass ratio versus diameter of individual droplets (/5 =92 nA, 46 nA).

difference between the electrodes of the ICD and the laboratory ground is negligible),
yield the charge to mass ratio:
1 Lror\’
— . 2
5= (TOF) @

Lror is the distance covered by the droplet during the time of flight measurement,
49.5mm in our ICD (Gamero-Castafio 2007). The mass is computed with the
measured charge and charge to mass ratio. The diameter of the droplet is obtained
from its mass and the density of propylene carbonate.

The RPA measures the retarding potential distribution of droplets crossing a small
sampling area, rather than the retarding potential of individual droplets. Because
these distributions are relatively narrow, we will assign the mean retarding potential
for a given polar angle to all droplets sampled at that angle, and use this value to
compute their charge to mass ratios. Figure 6 plots the charge to mass ratio versus
diameter of individual droplets for the 92 nA electrospray, grouped by polar angles.
Approximately 200 droplets are sampled at each polar angle. Figure 6 also shows
the droplets of the 46 nA beam measured throughout its angular range. We think
that the use of an average retarding potential instead of each droplet’s value is a
major reason for the variability of & at fixed diameter. Nevertheless, the spread is
small and it is appropriate to define a function £(D). This functional dependence is
much weaker than the & oc 1/D? law consistent with an equipotential breakup (the jet
evolving into a droplet is regarded as a perfect conductor), the hypothesis commonly
used to model the effects of electrification on capillary jet breakup (Lopez-Herrera &
Gaifian-Calvo 2004; Collins, Harris & Basaran 2007).

Figure 7 shows the mean diameter and the mean charge to mass ratio versus
polar angle. The vertical bars across the symbols display the standard deviations
of each angular sample (the standard deviation is half the bar length). The charge
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FIGURE 7. Mean diameter and mean charge to mass ratio of droplets at different polar
angles. Vertical bars display the standard deviation of the distributions.

to mass ratio of main droplets is approximately constant for a given beam current,
regardless of the polar angle. & increases slightly along the edge of the main drop
beam, and becomes substantially larger for satellite droplets. The charge to mass ratio
of satellites increases substantially with the polar angle. The distributions of main
droplet diameters are relatively broad at each polar angle, and the mean diameter
decreases for increasing 6. At polar angles before the edge of the main droplet beam,
the decreasing trend is too weak to overcome the considerable variability, resulting
in a barely noticeable angular separation of main droplets by diameter. The 125 nA
beam, having main droplet diameter distributions that are virtually independent of 6,
is an extreme example of this phenomenon. The mean of the diameter distributions
decreases markedly along the edge of the main droplet beam, and at still larger
polar angles the satellite droplets have much smaller diameters. When comparing
different electrosprays, the diameters and mass to charge ratios increase with the beam
current.

2.4. Estimation of the initial velocity and potential of droplets. Line of
point charges approximation

The velocity of the droplets and the electrical potential at the jet breakup are initial
and boundary conditions for the beam model. To estimate these parameters we
will assume that the jet breaks at a constant axial location x;, generating droplets
with a narrow distribution of velocities and electrical potentials (the means of these
distributions must be similar to the velocity and potential of the jet at the breakup
point, v, and ¢,;). We then average the retarding potential at x; of all droplets
sampled at a given polar angle

1 1
(Prp)o = <2§vz(x1) + ¢(x1)>9 = <25>9 v+ (3)
Figure 8 plots (¢rp)y versus (1/2&), for the 5 electrosprays, together with linear
fittings. According to (3), the slope of the fitting is the square of the jet velocity
at the breakup, while its electrical potential is given by the interception with the
y-axis. Figure 8 shows that the data for the three larger currents do follow a linear
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FiGURE 8. The potential and velocity of the jet at its breakup point are estimated by taking
advantage of the distributions of charge to mass ratio and retarding potential typical of
electrospray droplets.

Iy @A) Q(ugs™) ¢ (V) 4, (V) vy (msT) Dy (um) (D) (um)
125 252 2050 1008 84 0.56 113
92 14.4 1950 885 96 0.40 0.91
69 8.74 1950 971 103 0.30 0.72
58 7.13 1900 483" 1367 0.23 0.69
46 4.19 1900 0.56

" These estimates are inaccurate because of the narrow range of charge to mass ratios available
for the 58 nA electrospray.

TaBLE 1. Relevant parameters of the electrosprays: beam current /5 ; mass flow rate Q; emitter
potential ¢ ; estimated potential ¢, velocity v; and diameter D; of the jet at the breakup
point; and mean diameter of main droplets (D).

law, which supports this method for calculating the initial velocity and potential of
droplets (Gamero-Castafio & Hruby 2002). The lack of satellite droplets and the
resulting reduced range of charge to mass ratios prevents the use of this method
for the 46 nA electrospray, and handicaps the estimate for the 58 nA case. Figure §
reveals that the voltage drop along the cone jet is roughly half of the available voltage
while the terminal jet velocity is of the order of 100ms~!. Table 1 gives currents and
flow rates, emitter potentials and the estimated jet velocities and potentials.

The high sensitivity of the beam model to the initial velocity of droplets, a result
to be derived in §3.1, underlines the need for information on the initial velocity
distribution. We have shown that (3) can be used to estimate the mean initial velocity.
In addition, the variance of the initial velocities can be estimated from the retarding
potential distribution if the spread of the latter is not driven by Coulombic repulsion
between droplets. If this were true, and due to the small spread of the charge to
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mass ratio (at least in the case of main droplets), the standard deviation of initial
velocities would be proportional to the standard deviation of the retarding potential
distribution:

~ (&) (&)

Oyy = mo‘ﬁRP = TJO'¢RP. (4)

The negligible contribution of the electric interaction between droplets is a hypothesis
that can be tested by solving the following ‘line of point charges’ model:

K,j#i

ooy & XX
%)= 2o jZ Ul —x P (5)

——K

Random[—1, 1]R,/+/2

xi(0) = { Random[—1, 1R, /2 , %1(0) =0,
4
= _ia +)“(l + l)vé:i = <$>aQt = <Q>’l =—K,...,—1,

ZZO»S:':&’%:%J:O’ (6)
Z=}Lo+/1(i_1)v‘§i=<€>’qi=<Q>’i=17--"K7

() i ()]

6 \ Ry

The model consists of 2K + 1 droplets placed along the z-axis, with random y and
x initial offsets of the order of the jet radius R;. A random sample of the number
distribution of the electrospray droplets yields the central droplet, i =0; this droplet
has a charge ¢, and a charge to mass ratio &,. The diameter of the surrounding
droplets, i #0, is the mean diameter (D) of the main droplet distribution, while their
charge and charge to mass ratio is that associated with (D); the droplets surrounding
the central droplet in this line of point charges model are therefore the average main
droplet of the electrospray. The initial z-separation between two average droplets is
the critical wavelength 4 of the jet breakup, while the distance 4, between the central
droplet and any of its two neighbouring droplets is the arithmetic mean of the central
droplet wavelength and A. We integrate in time this system of 2K + 1 differential
equations and stop when the potential energy of the group of droplets is 0.1 % of
the initial potential energy. At this point, the kinetic energy of the central droplet,
divided by its charge, is its retarding potential induced by Coulombic interaction
with neighbouring droplets. Figure 9 shows the retarding potential distributions of
central droplets, constructed by solving the model 1500 times with central droplets
sampled from the main droplet distribution and a value of 4 for K. A larger number of
neighbouring droplets can be used, but this only increases the mean of the distribution
and has little effect on its variance. Note that the standard deviations in figure 9 are
one order of magnitude smaller than those measured in figure 5. Therefore neglecting
the effect of interactions between droplets on the spread of the retarding potential
distributions is a sensible approximation, and we will use (4) to estimate the standard
deviation of their initial velocities. With the jet velocities computed in figure 8, the
standard deviations for the 69, 92 and 125 nA electrospray beams are 5.8, 5.4 and
4.7ms~!, respectively, i.e. 5.6 %, 5.7 % and 5.5 % of the mean initial velocities.

(7)
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FIGURE 9. Estimated retarding potential distribution induced by Coulombic interaction
between droplets. The standard deviations induced by this mechanism are much smaller
than the standard deviations of the measured retarding potential distributions.

It is surprising that the experimental retarding potential distributions are so broad,
especially in view of the negligible contribution from electrical interaction between
droplets and the near constant charge to mass ratio of the main droplets. Our
assumption of a fixed axial location for the breakup does not change this finding,
because the jet is accelerated with minimal losses of mechanical energy, and therefore
the retarding potential of the fluid along the jets is approximately constant regardless
of where it breaks. It appears that the only reservoir of energy large enough to drive
the broadness of the retarding potential distributions is the surface of the fluid, which
changes considerably during the transition from jet to droplet. Proving whether the
excess of surface energy is indeed the origin of the spread of retarding potentials
and how it would be converted into kinetic energy is not essential for this paper.
The relevant point is that Coulomb interaction between droplets cannot induce the
spread of the retarding potential distributions, and therefore the latter can be used to
estimate or at least bound the spread of the initial velocity distribution.

3. Beam model

The motion of an electrospray droplet is driven by the electric field induced by the
external electrodes, together with the electric interaction with all other droplets in
the beam. The latter makes the simultaneous integration of every droplet’s equation
of motion the natural method for reproducing the structure of the beam. However,
this Lagrangian approach has several problems: first, the number of evaluations at
each time step is proportional to the square of the number of droplets, bounding
rather fast the number of trajectories that we can simulate; secondly, the improved
accuracy resulting from the expensive tracking of individual droplets may not result
in a more accurate solution because of uncertainties in parameters such as the initial
velocity distribution; thirdly, it is incompatible with an analytical solution and we
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Figure 10. Experimental droplet diameter distributions. The largest beam currents display
bi-modal distributions associated with main and satellite droplets. The beam current is the
integral of f(D).

are interested in the functional dependence between the structure of the electrospray
and the properties of the droplets. This justifies the use of the time-independent
Eulerian model described below, for which an approximate analytical solution can be
found.

3.1. Analytical model

The ultimate goal of our model is to find the beam current density distribution
f(D, vy, 0) at the extractor plane, which is a function of the droplet diameter, its
initial velocity vy, and the inverse tangent 6 of its trajectory at the extractor plane. 6
is also referred to as the exit angle because, downstream of the extractor, the forces
acting on a droplet are negligible, and its trajectory becomes a straight line. The beam
current is, by definition, the multiple integral of f(D, vy, 6) for all D, vy and 6. We
will assume that the charge and the charge to mass ratio of a droplet are functions
of its diameter only, g(D) and &(D). The notation f(x) and f(x,y) stand for the
definite integral of the original distribution throughout the ranges of two, and one,
of its independent variables. For example, figure 10 shows the diameter distributions
f(D) of the 46, 58, 69, 92 and 125 nA electrosprays, constructed with ICD droplet
data and the beam current profiles. Using the experimental diameter distributions
and a normal distribution for the droplet initial velocity (a choice justified in §2.4),
the beam current distribution function is written as

1 _(vo—vy : )
f(Da vae)_ O‘U\/2>T[exp< ( \/EO'U ) >f(D)h(99Da 'U()), (8)

where o, is the standard deviation of the initial velocity distribution. The angular
density distribution h(6; D, vy) is a parametric function of the droplet diameter and
initial velocity. If f(D, vy, 8) were known, h(0; D, vy) could be constructed by varying
0 in f(D, vy, 0), while keeping D and v, fixed. h(0; D, vy) would be the resulting
0-curve, normalized by its integral.

We will compute h(6; D, vo) by solving the equations for the trajectory R(z) (i.e. the
radial component of the position vector in cylindrical coordinates) and axial velocity
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v(z) of a droplet, as functions of the axial coordinate z:

d’R  dvdR
22 paateh spch ext
vz +vdz dz §(E" + B, ®)
dv ext
v = EET (10)
Eext — —Vd)@a, (11)
R(0)=0, R(0)=0, v(0)=uv,. (12)

We separate the electric field into terms induced by the external electrodes (E*)
and the space charge of the electrospray droplets (E*"). This decomposition is
an approximation motivated by the lack of information about the geometry of the
cone-jet, and does not take into account the induced charge created in the electrodes
and liquid bulk by the droplets. Furthermore, we assume that the variation of the
trajectories with z is sufficiently slow to make the axial component of E**" negligible
(Reiser 1994). The charge to mass ratio and the initial velocity of the droplet appear
explicitly in the equations of motion. We will show that the droplet diameter has an
important effect on E*", and therefore the trajectory of a droplet will be a function
of its diameter as well.

The structure of the beam could be computed using a continuous model of averaged
beam parameters similar to the Navier—Stokes formulation in fluid mechanics.
Poisson’s equation for the averaged electric field would complement the equations
for the averaged beam velocity and droplet distributions. Unlike our model, the
continuum approach would have an exact expression for the averaged electric field,
but is extremely complex: the model must account for the fundamental distributions
of droplet diameter, charge and initial velocity in the sprays; the nonlinear inertial
term must be retained; the nonlinear partial differential equations for the averaged
velocity and droplet distributions are coupled to Poisson’s equation, and the space
charge distribution is not known a priori; besides the averaged electric field, modelling
the Coulombic interaction between droplets also requires the addition of an ad hoc
collision term; and probably, the characteristic length required to define averaged
quantities in these low-density sprays will yield an insufficient spatial resolution. We
are unaware of a mathematical formulation that includes all these complexities. If it
is possible, it is apparent that the continuum formulation is not compatible with the
analytical solution sought for our problem.

We estimate E"" by using a line of point charges model similar to that described
in §2.4. The droplet with a trajectory defined by (9)—(12) is the central droplet in the
line of point charges model. The neighbouring droplets have the charge and diameter
of the average main droplet, and form an infinite array that moves along the z-axis
with the central droplet and keeps a zero radial coordinate. They induce an electric
field on the central droplet at radial position R

2(9) R
spch —
EXR) = e ; [(7 + nA): + R (13

The factor of 2 in the numerator accounts for the neighbouring droplets upstream
of the central droplet. The diameters of the central and average droplets enter in
this formula through 4, and A, and therefore have an effect on the trajectory. We
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FIGURE 11. Electric field induced by a line of point charges: exact solution and _
approximations of the series >°/° ((R/[(4, + n)* + R*]3/?) for different droplet sizes, Z,.

obtain an approximate value for the infinite series by separating the nearest droplet
contribution, and integrating over n for the remaining droplets

n=0

i ~ R 4+ / Rdn
[, + n)2 +RP2 @R (o +n) + R
1/2

_ R VAR + (1427, — (1 + 2J,)
(2 + k232 RVARY + (1+27,)

(14)

In this expression, / is used as the characteristic length to define the dimensionless 7,
and R. Figure 11 plots the exact value of the series together with its approximation,
for different values of /,. For satellite droplets, 7, is near the minimum possible value
of 0.5 because of their small diameters relative to the average main droplet’s. For main
droplets, 7, distributes around 1, typically between 0.7 and 1.4. Figure 11 shows that
the approximation for the series is adequate for all physical values of 4,. The electric
field at the axis is zero and has a maximum near R = 1. The smaller the droplet, the
larger the maximum and the earlier it is reached. It is worth noting that (a) a uniform
distribution of charge along the axis generates a radial field proportional to 1/R;
and (b) the line of point charges model asymptotes relatively fast to this 1/R limit,
especially for the smallest droplets. The convergence fails for small R because 1/R is
singular at R =0.

The right-hand side of (14) multiplied by «Iz1/v, instead of {g) is our expression
for the space charge field:

iclp R N VAR + (1 + 27,2 — (1 +27,)
RVAR + (1 +27,) '

(15)

E(R) =
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The charge of the average main droplet (g) is approximately equal to Izi/v; from
conservation of charge in the jet. The new term «, referred to as strength factor, is
an input parameter with a value between 0 and 1 and remains constant along the
droplet trajectory. The use of the strength factor is motivated by the fact that in a
real breakup, the space charge forces felt by identical droplets will vary within an
interval ranging from zero to a maximum value of the order of the estimate given by
the line of point charges model. This range of forces causes the angular distribution
of identical droplets observed in experiments.
Upon inserting the space charge field, the dimensionless equations of motion are

AR _dvdR R VAR + (1420, = (14+20) | | < seu
v = UTT_ﬂ = = 3/2+ ~ = =~ +8Er
dz dz dz (224 R?) RVARY + (1427,
(16)
dv ~
M (SEeX[. 17
Vi ; (17)

We use the jet velocity, the mean breakup wavelength 4, and the axial component of
the external electric field at the jet breakup E; to make the variables dimensionless.
Near the emission point £ is O(1). Furthermore, E®' near the axis is negligible
because the emission point is far from the singular vertex of the Taylor cone
(the voltage drops along the cone-jet in table 1 are significant) and the electrospray
source is axisymmetric. £; can be estimated by solving the Laplace equation in
prolate spheroidal coordinates (Morse & Feshbach 1953):

arctanh(n)

— bt S 1
¢(;v n, 29) d)l aI'Ctal’lh(T]E)’ ( 8)
_ 2E, (1, ng, v) _ 2 1
Es= a ~ "V aarctanh(ng) 1 —n% (19)

The surface ¢ =onstant is a prolate spheroid with interfocal distance 2a, major
axis ¢a, and minor axis a(¢? — 1)1/2; the surfaces n = constant are two sheets of a
hyperboloid of revolution with foci at z= + a, asymptotic to the cone which has its
generating line at an angle © = cos™!n to the z-axis, and the surface ¥ = constant
is a plane through the z-axis at an angle ¢ to the (x, z)-plane. In this solution by
Martinez-Sanchez (2004) the surfaces of both the capillary emitter and the extractor
are regarded as hyperboloids, i.e. surfaces of constant . The n-coordinate of the
extractor plane is zero. The foci of the emitter hyperboloid are at z= + a, where a is
the distance between the emitter and the extractor plane. We make the radius Ry of
the cylindrical needle equal to the radius of curvature (@ — an%)/2ng of the emitter
hyperboloid at the axis, to obtain the value of n at the emission point, ny =0.983
(a=3.17mm, Ry =0.11mm for our geometry). The potential field can be visualized
by noticing that the equipotential surfaces between the emitter and extractor are also
hyperboloids with identical foci. As the value of the hyperboloid potential decreases,
its intersection with the axis approaches the extractor plane, and its radius of curvature
at the axis increases. With these values for nr and a, our estimate of E; is equal to
the factor 3895m~! multiplied by the electric potential at the breakup.

The parameters 8 and § are the ratios between the work done on a droplet by
electrostatic forces (space charge in the case of 8, external field in the case of §)
along a mean breakup wavelength 4, divided by the characteristic kinetic energy of
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the droplet

_ %-KIB _é}LE]

= <, B
2megv; vy

(20)

Both B8 and § are small numbers. § must be small because the fluid in the jet gains
kinetic energy forced by an electric field larger than E;, acting along a distance many
times greater than A. For k =1, B is bigger than § because the radial component of
the electric field at the jet perimeter, induced by its surface charge, is larger than the
axial component of the electric field. Typical values of § and g8 for the 92 nA beam
are 0.0071 and 0.011, respectively (k =1, E =15/Q).

The scales of B, §, E?Zand E® lead to these simplified equations valid near the
emission point

> ~ D2 T\ b1
LRy [ R AR -0420) o1
NGz P IR - - p ’
2+ R3}) R\J4R3 +(1+ 20,7
v(0
vy

These equations describe the initial expansion of the beam forced by space charge
repulsion. The importance of this initial space-charge-dominated region originates
from its substantial independence from the external field: the trajectory of a droplet
in the space charge region is an intrinsic property of the electrospray determined by
parameters of the jet breakup. To calculate a global analytical solution valid between
the emission point and the extractor plane, we would require an external region
where (16)—(17) could be simplified, obtain approximate analytical solutions for both
regions, and asymptotically match them along an intermediate region of common
validity. Unfortunately, this strategy is not possible for two reasons: first, there is not
an external region where (16)—(17) can be significantly simplified, i.e. most terms must
be retained; and secondly, the external electric field is intrinsically two-dimensional,
making (16)—(17) nonlinear. In view of the unfeasibility of a global analytical solution,
we will look for a solution based on the initial region equations, combined with a
criterion for estimating and defining a ‘boundary’ for the initial region. We will show
that for the typical emitter—extractor geometry shown in figure 2 and the relatively
near-axis trajectories of these sprays, the tangent of the trajectory does not change
much downstream of the initial region boundary. Thus the solution of (21), evaluated
at the boundary of the initial region, provides a good estimate of the exit angle of
the droplet.

Equation (21) does not have a solution for Ry(z) in terms of elementary functions.
However, a first integral yields the tangent of the droplet trajectory, tan(fy) =dRy /dz:

28

VAR, + (14222 +14 27,
tan(Oy) =/ = |In

% 2+47,

1 1
55— (23
Yo R 472
The validity of this solution breaks down when the weakening space charge force
cannot prevent the inward bending of the droplet trajectory caused by its axial

acceleration, i.e. when the ©(d9/dZ)(dR/dZ) term of (16) becomes comparable to the
right-hand side of (21). We impose this condition to define the boundary R} of the
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region dominated by space charge. R}, is implicitly given by the algebraic equation

VAR H 2L P+ 1424 {
In ; B B e
2+4/, Ao Rj*vz + 2
s R VAR + (142,72 — (14 27,)

(24)

— +
2 > ~ .2\ 3/2 ~ - ~
26° | (72 + Ry) R*N\/4R;j (142,

The value of R} inserted into (23) yields the tangent of the droplet trajectory at the
boundary of the space charge region, 6.

Before proceeding with the description of model results, let us summarize the
variables and parameters used by the model. The dependent variables in the trajectory
(9)~(12) are the radial position R(z) and axial velocity v(z) of the droplet. The
independent variable is the axial position z. The electric field E*"(x) induced by
the external electrodes is a dependent variable in these equations, but only the
axial component E; at the jet breakup is required for the simplified equations near
the emission point. The solution is also a function of the following parameters of
the droplet for which the trajectory is computed: charge to mass ratio &, initial
axial velocity vy, and breakup wavelength, which upon combination with A yields
/0. Additional input parameters are the beam current Iz, the jet velocity v; and
potential ¢, at the breakup, and the average breakup wavelength A. The values of
these parameters are either measured or inferred from experimental measurements
of the electrosprays. We use these parameters to non-dimensionalize the variables of
the model and to define the dimensionless numbers 8 and §. The model also includes
the definition of the strength factor x. Although « ranges between 0 and 1, neither the
analytical model nor measurements can provide its value. At this stage, the strength
factor must be regarded as a free parameter which must be specified a priori before
computing the trajectory associated with it. Section 3.2 argues how to estimate « for
the analytical model, while §3.3 provides a physical law for computing « when the
trajectories of many droplets are integrated simultaneously.

3.2. Analytical model results and comparison with experimental observations

Figure 12 shows a comparison between 6y and the ‘exact’ solution obtained by
integrating numerically (16)—(17). We consider two droplets of the 92 nA electrospray,
the average main droplet (4, =1, 8 =0.0097, § =0.0061) and a typical satellite droplet
(1{, =0.56, B =0.032, § =0.020). The droplets are accelerated by the full force of the
line of point charges model (x = 1) and by the external electric field solved in prolate
spheroidal coordinates. A small but non-zero initial value for the droplet radial
position, R(0)=0.01, is imposed to allow the separation of its trajectory from the
axis (the sensitivity of the trajectory to this parameter is small, owing to the radial
dependence of the space charge force). The trajectory is integrated up to the extractor
plane (Z=1011) to compute the full effect of the external electric field. Figure 12 also
shows the ‘exact’ trajectory Z(R) and the value of the exit angle 05 The largest increase
in the inverse tangent happens in a short initial area within a radius of approximately
ten wavelengths /. The exact solution and 6y compare well in this interval, although
Oy is always larger because of the neglected axial acceleration. Beyond the boundary
of the space charge region, defined by the pair {R}, 6y}, the inverse tangent may
slightly increase or decrease depending on the angle formed by the velocity of the
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FIGURE 12. Numerical solution (z(R) and Opxacr) of (16) and (17) and approximate solution
(6y) for the inverse tangent of the trajectory, (23). The pair LRN, 0y}, identified by the
symbol +, defines the boundary for the space-charge-dominated region and can be used as an
estimate of the exit angle of the trajectory at the extractor plane. Iz = 92nA, x = 1.
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FiGure 13. Radial boundary of the space-charge-dominated region defined by (24).

droplet and the external electric field. However, despite this contribution from the
external field, 05 is a good estimate of the exit angle at the extractor plane.

Figure 13 shows R}, as a function of both 7, (i.e. droplet size effect), and the group
B3 /28%. For example, B3 /28 varies from 0 (k =0) to 139 (k =1) for the main
droplets of the 92 nA electrospray, while the upper bound for its satellite droplets is
approximately 25. Rj increases with both A3 /28> and J.. Its range is mostly
determined by the span of 9%/28%, while the contribution of 7, is less significant.
Figure 13 also displays a simple and accurate function for R} and Z,=1,
Ry =0.941(B03 /28)04%8,
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FiGURe 14. Droplet size factor in (23) for the exit angle.

The expression for the tangent of 6 can be separated into two components: a
‘controlling factor’ 1/28/v%, and a ‘droplet size factor’ (the remaining terms on the

right-hand side of (23)). The controlling factor varies between 0 (x =0) and 0.14
(x =1) for the main droplets of the 92 nA electrospray, whereas its upper limit for a
typical satellite droplet is 0.33. Figure 14 plots the droplet size factor as a function
of Bv%/28% and 4,. With the exception of droplets with very small polar angles (i.e.
with small values of B#%/282), the droplet size factor is near or slightly larger than
one. In contrast to R}, the droplet size factor depends mostly on 7, and introduces
a diameter dependency on the droplet exit angle. Thus, a satellite droplet will have a
larger exit angle than a main droplet, not only because of the charge to mass ratio

effect in the controlling factor y/28/%%, but also because its much smaller diameter
increases the droplet size factor. Physically, this is due to the close proximity of the
nearest droplet at the breakup (the main droplet from which the satellite detaches),
and the resulting enhancement of the repulsive electric field acting on the satellite
droplet. The droplet size factor also contributes to the weak angular separation of
main droplets by diameters, especially for the electrosprays with narrowest charge to
mass ratio distributions. Finally, the actual dependence of R}, on 7, can be neglected
when computing 6. This is illustrated in figure 14 by the dashed curves calculated
with the fitting of f?;, for 7, =1, which fall near the exact solutions.

Equations (23) and (24) for x =1 provide an estimate of the maximum exit angle.
As k is varied from 1 to 0, the same droplet will exit the space charge region with a
lower trajectory. However, these equations do not determine the fraction of droplets
that are associated with an exit angle, i.e. they do not yield the angular distribution
h(6; D, vg). We will compute h(0; D, vy) by guessing a relationship between « and the
integral of 4 on 6, H(0; D, vy). Because the exit angle of a droplet with diameter D
and initial velocity vy is a function of the free parameter «, a change of variables leads
to H(x; D, vg). In this context, the cumulative distribution function H is the fraction
of beam current whose droplet trajectories are associated with a fraction of the space
charge field equal to, or smaller than «. Both H and « vary between 0 and 1. Although
the problem of interaction between individual droplets must be solved to compute
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H(k; D, vy), the experimental profiles in figure 3 suggest that H is approximately
equal to x, H = «, at least for the main droplets. To show this, let us consider the
beam profile I (current per unit solid angle) for the 46 nA beam, and assume that
all droplets are identical (based on the narrow diameter and & distributions). When
H =k, (23) shows that Iz H is approximately proportional to 63 :

3~2
IsH = _ meovs Uy /8 tan?(Oy) = K63. (25)
4Ry +9+3 1
In[+—— | +1—

6 Ry +1

This expression is a rearrangement of the terms in (23) particularized for a beam
of identical droplets, 1, =1. We use the small-angle approximation for the tangent
function. Iz H is the current flowing within the polar angle 6y, a quantity that can be
obtained from the experimental profile /:

On On
IgH(0) z/ 2nlg sin(x) dx g/ 2nlgx dx. (26)

0 0
Since the experimental profile resembles a rectangle function, Iz H(0) is approximately
a parabola just as (25) predicts. Thus, it is reasonable to assume that H = « for the
main droplets which are similar. On the contrary, H(x) should behave differently for
the smaller satellite droplets, with H'(kx) peaking at a value of the strength factor
near 1. This stems from the larger charge to mass ratio and smaller diameter of the
satellite droplets, together with the radial shape of the electrical potential induced
by the space charge (it is maximum at the beam axis): droplets at the axis are in
a position of unstable equilibrium, and any disturbance knocks them off radially.
Satellite droplets move away from the axis faster than main droplets because of the
larger &, compounded by the closer proximity of its two neighbouring droplets. Thus,
almost any satellite droplet will rapidly be in a radial position above those of main
droplets and, because the latter carry most of the beam current, they will be driven by
a large fraction of the maximum space charge field. With this caveat, and to advance
further, we will consider the simple case H =« for every droplet, and compute h(0;
D, vy) with (23) and (24), the substitution of « for H, and the relation between
cumulative and density distributions h(6; D, vo) =9 H(0; D, vy).

Figure 15 shows the current angular distributions f(6) for the 125, 92 and 69 nA
beams, computed with both the model and experimental profiles. The distributions
for the two smallest beam currents are not plotted because of the uncertainties in
the velocity and the potential at the jet breakup. We have found that the prolate
spheroidal coordinates solution for the external electric field overestimates E,; by
a factor greater than two: when solving the Laplace equation numerically for the
emitter geometry free of space charge, the axial electric fields at the jet breakup
point (which is identified by the value of its potential) are 1.79 x 10, 1.25 x 10° and
1.70 x 10 Vm~! for the 125, 92 and 69 nA beams, while the prolate spheroidal
coordinates estimates are 3.98 x 10°, 3.39 x 10, and 3.78 x 10°Vm~!. Figure 15
displays the angular distributions associated with both sets of electric fields to illustrate
the effect of E;. The shapes of the experimental and computed distributions agree
reasonably well, especially for the more accurate value of E,. A difference in E; by a
factor greater than 2 translates into a 20 % shift of the main droplet beam edge. E;
influences the solution through its presence in the denominator of the dimensionless
number §. Thus, the external electric field is a factor in the definition of the boundary
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FIGURE 15. Experimental angular profiles and analytical solutions in the space charge region,
for the three higher beam currents. (a) Ip = 69nA; (b) 92nA; (c) 125nA. The analytical
solutions are computed for two values of the axial component of the electric field.

of the space charge region and as such has an effect on the exit angle, but it only
enters through the nearly constant droplet size factor on the right-hand side of (23).
An important divergence in figure 15 is the presence of satellite droplets at small
polar angles in the model distribution, which is not observed in the experimental
data: the actual sprays have a sharp angular separation of main and satellite droplets.
This discrepancy is due to the use of H =« for satellite droplets, a shortcoming of
the analytical solution already explained.

We use the prolate spheroidal estimate of E; in the remaining graphs of §3.2. We
will use a more accurate external electric field in § 3.3, where a full numerical solution
is computed. For now, we are interested in the trends exposed by the analytical
solution, and for which the less accurate but simpler form of E; suffices. Figure 16
shows measured and model f(D,6) distributions for the 125 nA beam. They are
plotted as a function of the droplet diameter, for different values of the exit polar
angle. We have divided f(D,0) by f(6) to normalize the heights of the curves. We
consider only main droplets in the model distributions to eliminate the distortion
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FIGURE 16. Experimental diameter distributions and analytical solutions at different polar
angles (/g = 125nA). The angular separation of main droplets by diameters is important along

the inner beam edge.
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FIGURE 17. Analytical angular distributions for different main droplet diameters (/g = 125nA).
The initial lack of angular separation by droplet diameters is a result of the initial quasi-linearity
of the distributions.

caused by the unphysical presence of satellite droplets at small polar angles. A
remarkable feature of this figure is the near constancy of the diameter distributions
throughout most of the angular range of the main droplets, a characteristic already
hinted by figure 7. For example, the experimental distributions at 2.2° and 11.8°
are nearly identical, while the computed distributions are indistinguishable. Beyond
approximately 14°, and coinciding with the edge of the main droplet beam in figure 3,
the mean of the diameter distributions shifts to smaller diameters. This phenomenon
is better explained by the shape of the f(D, 6) distributions when they are plotted as a
function of 0, as shown in figure 17. For a given diameter, f(D, 6) starts at the origin
of coordinates, it is approximately a straight line throughout most of its angular range,
and transitions into a sharply falling edge once a critical angle is reached. The finite
slope of the edge is a consequence of the integration of f(D, vy, 0) in velocity space
(the trailing edge of f(D, vy, 0) at fixed diameter and initial velocity is a vertical line).
The critical angle of a droplet and therefore its angular range increases with decreasing
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FiGure 18. Computed angular profiles for different values of the initial velocity standard
deviation (I =92 nA).

diameter. According to figure 17, the fraction of droplets with a given diameter will
remain constant at increasing polar angle because its angular distribution is a straight
line. As a result, the shapes of the diameter distributions will be identical regardless
of 6. This constancy of the diameter distributions ceases beyond the critical angle
of the largest main droplet, which is approximately 13.8° for the 125 nA beam.
From this point on, there is a separation of main droplets by diameters because the
larger droplets disappear gradually from the spray, reducing the mean diameter of
the distributions as the polar angle increases. Note that the angular insensitiveness
predicated by the model is a consequence of the square root in the controlling factor
of (23), together with the assumed proportionality between cumulative current and
strength factor for main droplets, H = «. Because this model prediction agrees with the
experimental observation, we conclude that the H =« simplification for main droplets
is indeed a good approximation (the original argument justifying this equality was
based on the rectangular shape of the profile of a beam made of identical droplets).

In the previous graphs, we have used a standard deviation o, =0.05v; for the initial
velocity distributions. The 5 % value is based on the analysis of the retarding potential
curves described in §2.4. Figure 18 shows angular distributions for different standard
deviations. This parameter has a minor effect on the shape of the angular distribution
at the values typical of these electrosprays. Broader initial velocity distributions
(standard deviations of the order of 20 % of the jet velocity) are required to smooth
the beam profiles significantly, in particular, to smooth the sharp edge of the main
droplet beam. The dimensionless number § in the controlling factor of the exit angle
is inversely proportional to the cube of the characteristic initial velocity v,, while the
droplet size factor has a weaker dependence on v;. Therefore, the angular distribution
will significantly shift to larger angles for decreasing values of the jet breakup velocity.
The spread of the initial velocities, reflected on the parameter Dy, is also part of the
controlling and droplet size factors. For narrow velocity distributions, 9y does not
depart much from 1, and the resulting beams should have near identical angular
distributions, as shown in figure 18. As the velocity distribution becomes wider, we
would expect a larger effect, especially along the edge of the main droplet beam:
in the initial quasi-linear region of the angular distribution and fixed polar angle,
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FiGUure 19. Contour plot of the exit angle as a function of the charge to mass ratio & and
diameter (I =125nA). The larger £-component of the gradient of the exit angle is explained
by the presence of & in the controlling factor of the expression for the exit angle.

the reduction in current caused by the smaller initial velocity of a larger droplet is
compensated by the current associated with a smaller droplet with a larger initial
velocity; this compensating mechanism disappears at the edge of the beam because
of the separation of droplets by diameters, making the edge smoother as the velocity
distribution widens.

Figure 19 plots contours of constant exit angle as a function of the charge to mass
ratio & and diameter D of a droplet. The exit angle is computed for the 125 nA beam,
using a value of one for both the strength factor and the dimensionless initial velocity.
We also plot the average charge to mass ratio of the 125 nA beam droplets. It is
a familiar result of electrostatics that droplets with different charge to mass ratios
will have identical trajectories if and only if they have the same initial positions and
retarding potentials. For example, in our model and considering ¥y =« = 1, droplets
with different & will have different exit angles because they have different retarding
potentials, ¢; + v3/2£. Further application of this result must be done with caution
because although our field is electrostatic, it is a function of the droplet diameter (it
also depends on the strength factor, but we are considering x = 1). Thus, droplets with
identical & and therefore the same retarding potential, but with different diameters,
will also have different exit angles, as illustrated by figure 19. The dependence of the
exit angle on the charge to mass ratio is due to the presence of & in the controlling
factor of (23), whereas the effect of the droplet diameter is due to the presence of /,
in the droplet size factor. The controlling versus droplet size factor effect is illustrated
in figure 19 by the gradient of the exit angle, whose &-component is clearly larger
than its D-component throughout the graph. This gradient, together with the £(D)
path of the electrospray droplets, determines the contributions of & and D to the
actual range of exit angles.

3.3. Numerical integration of multiple trajectories using a physical law for
the strength parameter k

The analytical solution provides a functional form describing the effect of the beam
parameters on its structure. This is possible at the cost of accuracy: although our
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definition of the space charge region boundary yields a good estimate for the exit
angle, the analytical solution does not solve the smaller contribution from the external
field downstream of the space charge region. Furthermore, the use of H =« is
inappropriate for the smaller satellite droplets. Both problems can be addressed by
numerically integrating the differential equations of the beam model while using
a scheme for computing H(x). We have done this by dividing the experimental
diameter distribution f(D) into m segments made of droplets with identical diameters
and charge to mass ratios, D; and &, and carrying a net current I, Ig= > I,
i=1,...,m. Each segment is further divided into n beamlets with equal currents,
Iij=1I/n, j=1,...,n, and with initial velocities vy;; determined from the assumed
normal velocity distribution:

0 2
n vV—1Uy .1
— — dv=j—1 27
O—u\/ﬁ/voij exp( (ﬁ‘%)) T @)

These definitions are incorporated in the equations governing the trajectories of the
m X n beamlets,

‘U% dzRij - dvij dRU
Y dz? "dz dz
byl SR, N \/4R3, QA+ 2 — 20+ 2)

+EEM, (28)

2me0vs | ((2+ )2 +4R2)™ R; \/4R§. + (204 4i)?
d'l)'j
ij : - iEth7 29
e (29)
Eexl — —V¢€XI, (30)
0(20) = ds Rylzo) = LRy Ri(z0) =0, vy(z0) = vy, (31)
Zlkl» Vk,1> Ru(z) < R;(z)
Kij(z) = (32)

> 5. ¥k, 13 Ru(z) < Ran(z)’

A is the breakup wavelength of the average main droplet (3.10, 3.13 and 2.82 um
for the 125, 92 and 69 nA beams, respectively), while 4; is the wavelength associated
with the i-segment droplet. The trajectory equations are coupled by the strength factor
kij. The strength factor «; of the ij-beamlet is the sum of the currents of beamlets
with trajectories falling under R;; the sum is normalized so that «;, is equal to one,
1.e. the most external beamlet of every i-segment sees the full force of the line of point
charges model. «; is computed at each integration step, and provides a mechanism
for the angular separation by droplet diameters observed in the experimental sprays.
Before integrating the equations, the external electric field is solved numerically in a
geometry containing the perforated extractor electrode and the emitter tip. The latter
is a conducting cylinder with the outer radius of the electrospray needle, and which
ends in a 45° cone. The vertex of the cone is located at z=0. The initial conditions
are placed at the axial position zo where the numerical solution of the potential field
is equal to the jet breakup potential; zo is 196, 264 and 196 pm for the 125, 92 and
69 nA beams, respectively, while the axial electric fields at zq are 1.79 x 10, 1.25 x 10°
and 1.70 x 10 Vm™!,
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FIGURE 20. Numerical integration of droplet trajectories and inverse tangents (/5 = 125nA).
The curves are for three droplet diameters and three initial velocities.

Figure 20 shows typical trajectories Rj;(z) and their inverse tangent arctan (R;;(z))
for the 125nA beam. The diameter distribution has been divided into 175 beamlets
(m=25, n="7), and the standard deviation of the initial velocity distribution is 5 %
of the jet velocity, o, =0.05v,;. The curves in figure 20 are for two main droplet with
diameters of 1.30 and 1.00 um, and for one satellite droplet, D =0.23 um. The three
curves for each droplet have different initial velocities, vg; /v; =1.07, 1.00 and 0.93,
the higher the initial velocity the nearer the trajectory to the z-axis. The trajectories
resemble straight lines at the scale of the figure. Satellite droplets separate early
from the main droplet trajectories, the latter ones remaining closer to the z-axis.
This is consistent with the strong angular separation observed in experiments. On
the other hand, the separation between main droplets of different diameters is much
weaker, with most of the two main droplet ranges overlapping each other. The inverse
tangent curves display the initial expansion of the beam with greater resolution. The
inverse tangent increases rather fast until it reaches a maximum in the case of the
satellite droplets, or an asymptotic growth for the main droplets. The inverse tangent
of satellite droplets decreases beyond its maximum because at that large radius the
space charge force becomes negligible compared to the external electric force, and the
motion of the particle is dominated by axial acceleration and the resulting bending
of the trajectory towards the axis. The inverse tangent of the main droplets does not
exhibit a maximum because although the space charge force becomes increasingly
small, it is always comparable to the external electric force and acts against the inward
bending of the trajectory associated with the axial acceleration.

Figure 21 shows the angular distributions derived from the numerical solution.
They match the experimental profiles better than the analytical solutions in figure 15:
the main droplet distributions follow the experimental curves closely, and satellite
and main droplets are well separated. The improvement should be expected because
the numerical scheme implements the effect of the external field on Rj(z), as well
as a mechanism for computing H(k; D, vy). The computed satellite distributions do
not reproduce the largest angles of the experimental distributions, probably because
we did not characterize these most external regions of the beams with the ICD.
As a result, we expect that the diameter distributions of figure 10 do not include
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FiGURe 21. Experimental angular profiles and numerical solutions for the three higher beam
currents. (a) Ig =69nA, (b) 92nA, (c) 125nA. The model predicts well the shape of the
distributions and the separation between main and satellite droplets. We also plot the angles
for which we have measured the diameter and specific charge of droplets.

the smallest satellite droplets, and therefore we cannot compute the trajectories with
largest exit angles. Figure 21 shows the polar angles where the electrosprays were
sampled by the ICD: the largest polar angles are 20°, 24° and 26° for the 69, 92 and
125nA beams, respectively; these angles compare well with the maximum angular
range of the computed distributions.

4. Summary

We have characterized five electrosprays of a propylene carbonate solution in
vacuum. The broadness of these beams increases with the beam current. At the
lowest current there is a single conical beam made of main droplets. Satellite droplets,
which have smaller diameter and larger charge to mass ratio than main droplets, are
generated at larger beam currents and form a second coaxial beam surrounding
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the main droplets. In all cases, the current per solid angle versus polar angle
associated with main droplets resembles a rectangle function. We have measured
the charge and diameter of individual droplets with the combination of an induction
charge detector and a retarding potential analyser, and mapped the distributions
of these parameters throughout the polar range of the beams. There is a good
mixing of main droplet diameters throughout most of the inner beam, followed by
a concentration of smaller main droplets along the inner beam edge. The charge
and diameter distributions of either main or satellite droplets are broader than their
charge to mass ratio distributions; the charge to mass ratio at fixed diameter is
narrowly distributed; and for main droplets, the charge to mass ratio is a weak
function of the diameter, becoming nearly constant when satellite droplets are absent
from the spray. The latter experimental observation contradicts the applicability
of the equipotential electrification assumption to model the capillary breakup of
cone-jets.

Our beam model is based on an Eulerian formulation without explicit time depen-
dence, which is made possible by the use of a simplified expression for the space
charge electric field. This field is induced by a periodic distribution of the average
main droplet along the axis, referred to as line of point charges model. The resulting
radial electric field is a function of the radial position, the properties of the average
main droplet, and the diameter of the droplet on which the field is acting. The
simplified equations of motion reveal the existence of an initial region where: (a)
the external electric field does not alter substantially the very large initial axial
velocities of the droplets; and (b) the radial velocities of the droplets are driven by
the space charge. We have found an analytical solution for the tangent of the droplet
trajectory in this initial region which, combined with a criterion for estimating and
defining its boundary, yields the angle of the trajectory as it exits the space charge
region. Furthermore, for the geometry and potential differences typical of an emitter—
extractor electrospray source, the tangent of the trajectory changes little beyond the
initial region. Therefore the analytical solution reproduces, in terms of beam and
droplet parameters, the main features of the beam structure measured downstream
of the extractor. In particular, the analytical solution explains: the parabolic relation
between accumulated beam current and polar angle (or equivalently the rectangle
function aspect of the beam profiles); the existence of an outer beam associated
with satellite droplets; and the initial weak angular separation by diameters of main
droplets, and why the diameter separation becomes noticeable at the edge of the main
droplet beam.

Although the analytical solution is a sound framework for explaining the structure
of the sprays, it does not describe the effect of the external electric field beyond the
space charge dominated region, nor does it provide a satisfactory way of relating the
current distribution to the space charge force. We have solved these shortcomings
by computing the external electric field with a numerical package, and integrating
the trajectory equations for a small set of droplets representative of the beam. This
formulation implements a Coulombic interaction between trajectories with an electric
field that has the functional form of the line of point charges model, and whose
intensity at R is proportional to the sum of the currents of trajectories between the
axis and R. The comparison between the numerical solution and measured beam
profiles, shown in figure 21, is fairly good. In particular, we are able to reproduce
the near complete angular separation between main and satellite droplets. Such
a good agreement is interesting because of the intrinsic differences between the
physics of the actual beam and the model (i.e. Coulombic time-dependent interaction
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between individual droplets versus a steady-state Eulerain model of trajectories of
representative droplets), and the strong dependence of the model results on the initial
velocity of the droplets (errors made on the measurement of the initial velocity
amplify the difference between model and experimental results). We think that the
latter finding validates our estimates of the jet velocity and potential computed via
time of flight and retarding potential analysis. Conversely, we could use the beam
model combined with the simpler beam profile measurement to estimate the jet
velocity and potential, i.e. we could find the initial and boundary conditions of the
model that reproduce a good match between the experimental beam profile and
the model solution. This result would simplify the determination of key parameters
required for the study and modelling of capillary breakup of charged jets.

I am indebted to Dr 1. Katz for suggesting that the line of point charges model
could be used to estimate the space charge electric field. This research was largely
motivated by the interaction with Professor J. Fernandez de la Mora. The research
described in this paper was carried out at the Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA 91108, USA, under a contract with the National
Aeronautics and Space Administration.

REFERENCES

ASHGRIZ, N. & MasHAYEK, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291,
163-190.

CHANDRASEKHAR, S. 1981 Hydrodynamic and Hydromagnetic Stability, pp. 515-576. Dover.

CrLouPeEau, M. & PruneT-FocH, B. 1989 Electrostatic spraying of liquids in cone-jet mode.
J. Electrostat 22, 135-59.

CoLLINs, R. T., Harris, M. T. & BasaraN, O. A. 2007 Breakup of electrified jets. J. Fluid Mech. 588,
75-129.

ENnLOE, C. L. & SHELL, J. R. 1992 Optimizing the energy resolution of planar retarding potential
analyzers. Rev. Sci. Instrum. 63, 1788-1791.

Fenn, J. B, ManN, M., MEnG, C. K., WonG, S. K. & WHITEHOUSE, C. M. 1989 Electrospray
ionization for mass spectrometry of large biomolecules. Science 246, 64-71.

FERNANDEZ DE LA MORA, J. 1992 The effect of charge emission from electrified liquid cones. J. Fluid
Mech. 243, 561-574.

FERNANDEZ, DE LA MORA, J. 2007 The fluid dynamics of Taylor cones. Annu. Rev. Fluid Mech. 39,
217-243.

FERNANDEZ DE LA MORA, J. & LOSCERTALES, I. G. 1994 The current transmitted through an electrified
conical meniscus. J. Fluid Mech. 260, 155-184.

GAMERO-CAsTANO, M. & HRruBY, V. 2002 Electric measurements of charged sprays emitted by
cone-jets. J. Fluid Mech. 459, 245-276.

GAMERO-CAsTANO, M. 2002 Electric-field-induced ion evaporation from dielectric liquid. Phys. Rev.
Lett. 89, 147602.

GAMERO-CasTANO, M. 2007 Induction charge detector with multiple sensing stages. Rev. Sci. Instrum.
78, 043301.

GARNAN-CALVO, A. M. 1997 Cone-jet analytical extension of Taylor’s electrostatic solution and the
asymptotic universal scaling laws in electrospraying. Phys. Rev. Lett. 79, 217.

GARNAN-CALVO, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse
sprays in gas streams. Phys. Rev. Lett. 80, 285-288.

LOPEZ-HERRERA, J. M. & GaRNAN-CaLvo, A. M. 2004 A note on charged capillary jet breakup
of conducting liquids: experimental validation of a viscous one-dimensional model. J. Fluid
Mech. 501, 303-326.

MARTINEZ-SANCHEZ, M. 2004 16.522 Space Propulsion. Massachusetts Institute of Tech-
nology OpenCourseWare. http://ocw.mit.edu/OcwWeb/Aeronautics-and-Astronautics/16-
522Spring2004 /CourseHome /index.htm.



368 M. Gamero-Castaio

MCcEweN, A. B, NGo, H. L., LEComPTE, K. & GoLDMaN, J. L. 1999 Electrochemical properties of
imidazolium salt electrolytes for electrochemical capacitor applications. J. Electrochem. Soc.
146, 1687-1695.

MORSE, P. M. & FesHBACH, H. 1953 Methods of Theoretical Physics, Part 11, p. 1284. McGraw-Hill

REISER, M. 1994 Theory and Design of Charged Particle Beams p. 191. John Wiley.

RippICK, J. A, BUNGER, W. B. & Sakano, T. K. 1986 Organic Solvents. Physical Properties and
Methods of Purification, 4th edn. Wiley.

SHELTON, H., HENDRICKS, C. D. & WUERKER, R. F. 1960 Electrostatic acceleration of microparticles
to hypervelocities. J. Appl. Phys. 31, 1243-1246.

TAYLOR, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280,
383-397.





